

Report to the Unidata Polcon & User Committee Clifford Jacobs, NSF (almost retired)

Clifford Jacobs, NSF (almost retire

October 27, 2011

via Internet

Topical Outline

- NSF
- Budget
- Facilities
- Planned Major Investment

New strategic plan and priorities

NSF

NSF's Strategic Plan 2011-2016

Vision: NSF envisions a nation that capitalizes on new concepts in science and engineering and provides global leadership in advancing research and education.

NSF Core Values

- Visionary
- Dedicated to Excellence
- Learning and Growing
- Broadly Inclusive
- Accountable

Strategic Goals

- **1. Transform the Frontiers: Emphasizes the seamless** integration of research and education as well as the close coupling of research infrastructure and discovery.
- 2. Innovate for Society: Points to the tight linkage between NSF programs and societal needs, and highlights the role that new knowledge and creativity play in economic prosperity and society's general welfare.
- **3. Perform as a Model Organization: Emphasizes importance** to NSF to attain excellence and inclusion in all operational aspects.

Cross-NSF Priorities and Activities

catalyze human capital development

improve organizational efficiency OneNSF

create networks and infrastructure for the nation

spark greater innovation and opportunity for scientific discoveries

address multidisciplinary challenges of national/global significance

support fundamental research in all disciplines

Director's Priorities: OneNSF

- Innovation Agency
 - Global leader in science and engineering innovation and research into education
 - Important role from discovery to marketplace
- Strategic Agency
 - Integrated, systems-level thinking
 - Responsive to societal needs
 - Catalyst for breakthroughs
- Model Agency
 - Proactively share best practices across agency and globally
 - Experiment with latest technologies
 - Use new technologies to increase participation
 - Accountable and efficient

What is hoped for in the context of what has been

BUDGET

NSF FY 2012 Budget Request

TOTAL:\$7.767 billionIncrease:13 percent over2010 enacted level

National Science Foundation

FY 2012 BUDGET REQUEST TO CONGRESS

GEO FY 2012 Budget Request

- In 2012, GEO is requesting \$979,160,000; an increase of \$89.52 million or 10.1%.
- All increases are based on the existing FY 2011 Continuing Resolution, which for GEO is the same as the 2010 Appropriation.

GEO Ten-year Funding History

GEO Subactivity Funding

Budget Request by Division

t
).2%
3.3%
3.1%
).2%
).1%

Totals may not add due to rounding.

GEO and ARRA

- Major ARRA Investments:
 - Alaska Region Research Vessel \$105.93M from ARRA
 - Ocean Observatories Initiative \$148.07M from ARRA
 - Education (\$35M)
 - GRF (\$10M), IGERT (\$9M)
 - Research Infrastructure (\$72M)
 - Research Activities (\$240M)

Recent and future investments

FACILITIES

Recent and Ongoing Major Facility Investments

- HIAPER: Operational
- <u>AMISR</u>: Poker Flat, AK: operational; Resolute Bay, Canada: under construction.
- <u>EarthScope</u>: Operational
- <u>Scientific Ocean Drilling Vessel</u>: Operational
- <u>Ocean Observatories Investment</u>: under construction
- <u>R/V Sikiliaq (formerly Alaska Regional Research</u> <u>Vessel)</u>: under construction
- NCAR/Wyoming Supercomputing Center: under construction
- Regional Class Research Vessels: up to 3 ships under consideration as an MREFC project

GEO Infrastructure Investments: Recent, Underway, and Considered

NCAR-Wyoming Supercomputing Center

- Construction began June 2010 and proceeding on schedule
- RFPs for supercomputer, data storage and data archive released.
- System will be 1-1.5 Pflops peak at or above NSF "Track 2"
- Earned Value Management System data indicate satisfactory cost and schedule performance in each of the primary areas of activity.
- No significant issues or areas of concern.

2010	2011	Total
\$31	\$17.1	\$48.1
million	million	million

MILESTONE	DATE
Completion of	August 2011
Construction	
Supercomputer and Data	RFPs: December 2010
Storage Procurement	HPC Delivery: January 2012
Transition from Boulder	Begins: August 2011
Start of Full Operations	July 2012 (or earlier)

Underway and planned

MAJOR INVESTMENTS

Major Investments Planned

- Science, Engineering and Education for Sustainability (SEES)
- Creating a More Disaster Resilient America (CaMRA)
- Cyber-infrastructure *EarthCube*
- Continuing investments in Basic Research, Education & Diversity, Infrastructure

Science, Engineering, and Education for Sustainability (SEES)

- Generate discoveries and build capacity to achieve an environmentally and economically sustainable future
- FY 2012 priorities:
 - Advance a clean energy future
 - Nurture the emerging SEES workforce
 - Expand research, education, and knowledge dissemination
 - Engage with global partners
- Environment, energy, and economy nexus

SEES – Geosciences Foci

- Sustainable Energy Pathways
 - characterize and understand existing energy systems and their limitations (e.g. wind, geothermal, hydro)
 - understand risks and stressors associated with new and emerging energy sources (e.g. tidal, clean coal, carbon sequestration)
- Sustainability Research Networks
 - interdisciplinary research and education partnerships involving government, academe, and the private sector
 - address fundamental issues of use in improving policy and practices with regard to energy, the environment, and human well-being

FY 2011 and 2012 Activities

- Dear Colleague Letter (NSF 11-022)
- Research Coordination Networks–SEES track (NSF 11-531)
- SEES submission encouraged in Dynamics of Coupled Natural & Human Systems (NSF 10-612)
- New: Sustainability Research Networks (NSF 11-574)
- New: SEES Fellows (NSF 11-575)
- New: Sustainable Energy Pathways (NSF 11-590)
- Exclusive SEES focus in Partnerships for International Research and Education (PIRE) solicitation (*NSF 11-564*)
- Climate-related competitions continue
- SEES Summit planned for March 2012

Creating a More Disaster Resilient America (CaMRA)

- GEO will initiate a new program -- Creating a More Disaster Resilient America (CaMRA)
- CAMRA will catalyze basic research efforts in hazard-related science to improve forecasting and prediction of natural and man-made hazardous events
- AGS, EAR, OCE participating
- Formal solicitation planned

EarthCube Towards Knowledge Management for Earth System Science

(A progress report)

Cliff Jacobs Eva Zanzerkia Jennifer Schopf

Brown Bag Presentation to BIO (NEON) Oct. 27, 2011

Talking Points

- Context (CiF21 and GEO Vision)
- EarthCube
- Progress to date
- Timeline & Guidance
- Anticipated Outcomes
- Comment and Questions

Cyberinfrastructure Ecosystem (CIF21)

Maintainability, sustainability, and extensibility

Transforming Earth Science

Science Foundations of EarthCube

GEO Vision

"To understand more deeply the planet and its interactions will require the geosciences to take an increasingly holistic approach, exploring knowledge coming from all scientific and engineering disciplines."

"Fostering a sustainable future through a better understanding of our complex and changing planet."

CALL TO ACTION: "Over the next decade, the geosciences community commits to developing a framework to understand and predict responses of the Earth as a system—from the space-atmosphere boundary to the core, including the influences of humans and ecosystems."

Take away points

- Community driven call to action
- EarthCube is an outcome and a process
- EarthCube will require broad community participation

WHAT IS EARTHCUBE?

EARTHCUBE ASSUMPTIONS

- The geosciences community is ready to take on the EarthCube challenge
- Community will start self-organizing prior to the EarthCube Charrette
- Current and emerging technology will help achieve the convergence envisioned for EarthCube
- A broad range of expertise and resources must be engaged to shape EarthCube

Goal of Earth Cube

to transform the conduct of research in geosciences by supporting the development of community-guided cyberinfrastructure to integrate data and information for knowledge management across the Geosciences.

Knowledge Management

Making Knowledge Visible			Building Knor	wledge Intensity
Easy Usability	 Who knows what Taxonomy of expertise Yellow pages Competence Uniformity of access 	(c	community) Creation	 Capacity Building Face-to-face contact Competence centers Community of practices Management of knowledge processe Networking – incl. we
Building Kn	owledge Infrastructure		Developing a K	nowledge Culture

From A. Boynton, "Exploring Opportunities in Knowledge Management: How to Get Started" Knowledge Management Symposium: Leveraging Knowledge for Business Impact, IBM Consulting, Sydney, 1996

A Unifying Architecture and Technology Advances Will Lead to Strategic Convergence on KM

Building on the Internet Paradigm

- The Internet provided a knowledge system that transformed the modality of science
 - Unanticipated Outcomes
 - NSF's role included influencing the set of standards that were adopted
- CIF21 investments must provide a framework of integrated and interactive services

Progress to Date

- Two WebEx's (~350 signed up)
- Set up social media website (518 participants)
 - 185 people have filled out the science requirements (public)
 - 111 white papers submitted (deadline Oct. 17)
 - ~140 people registered for on-site and ~40 virtural
- Establish an internal working group to guide process and serve as moderators on website
- Established an sub-group of AC/GEO to help guide process (AC/OCI sub-group work in progress)
- Detailed planning for Charrette (Nov. 1-4)

Charrette Planning

- Duration: Three and ½ day meeting
- Place: The Hilton Washington Dulles Hotel
- Purpose: to present, refine, and integrate the best ideas, technologies, and approaches to meet the science needs of the community
- Agenda:
 - Day 1 From here to EarthCube a call to action
 - Day 2 The Challenges to realize EarthCube
 - Day 3 Mapping vision, challenges, and milestones to EarthCube design
 - Day 4 Next steps

EARTHCUBE TIMELINE

- On-line Community Information: (August to November, 2011)
- EarthCube Charrette: (Early November, 2011)
- Post Charrette: (Mid-November to April, 2012)
- EarthCube 2nd community event: (Tentatively Early May, 2012)
- Prototype Development: (May to December 2013)
- Fully integrated geosciences infrastructure: (2014-2022):

Anticipated Outcomes

- Transform scientific enterprise
- Substantial increase in scientific productivity and capability
- Integrate and sustain connections among multiple modes of support
- An engaged community with a common vision
- Iterative discovery process leading to consensus on the best approach

EarthCube Pointers

- External Website
 - <u>http://earthcube.ning.com</u>
- NSF Website
 - <u>http://www.nsf.gov/geo/earthcube/index.jsp</u>
- Internal Wiki
 - <u>https://nsfwiki.nsf.gov/display/geo/earthcube</u>
- EarthCube Group
 - Representatives from all GEO directorates and OCI
 - <u>earthcube-group@nsf.gov</u>
- Smaller group for day-to-day management
 - <u>earthcube@nsf.gov</u>

Remembering Jarvis

To honor Jarvis' many contributions to the field, the American Meteorological Society is establishing the Jarvis Moyers Travel Fund to support students who want to attend the annual AMS meeting.

Thanks

NATIONAL SCIENCE FOUNDATION