
Climate Data Case Study

Lawrence Buja National Center for Atmospheric Research Boulder, Colorado

Vector development

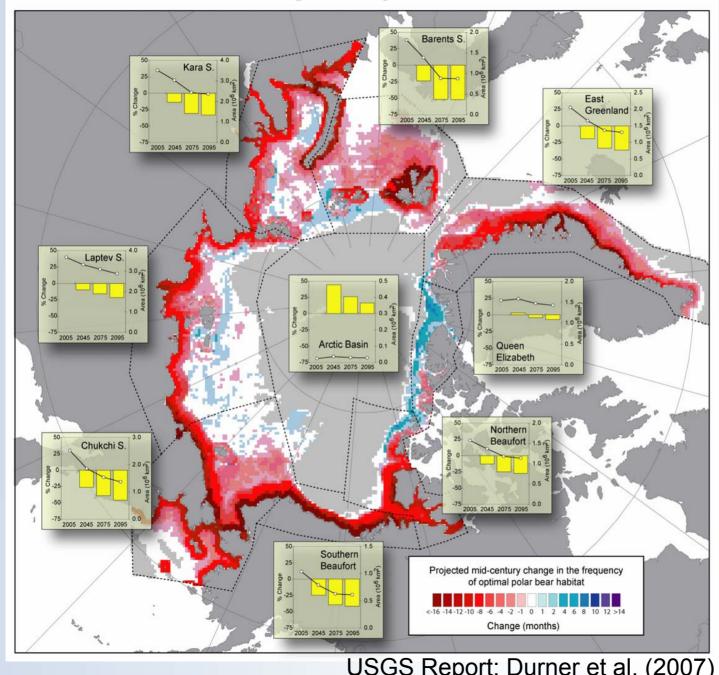
/ector development

<u>CDP/ESG has transformed</u> <u>CCSM data services</u>

"Lets our Scientists do Science"

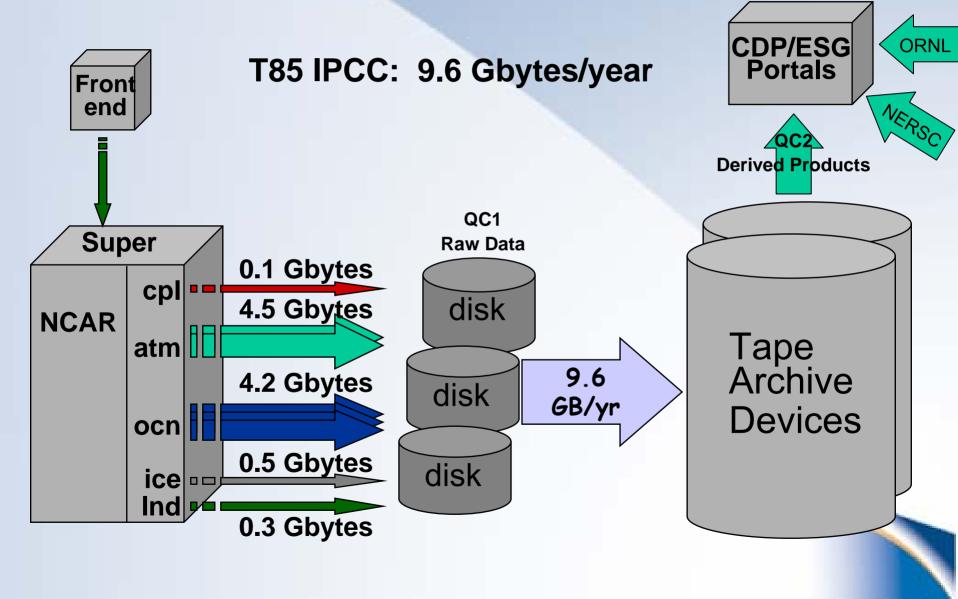
- CCSM3.0 Release (2004)
 - Source Code, Input data and Documentation
 - So easy that it was almost an afterthought.
- IPCC AR4 (2005-present)
 - Distributed data services through PCMDI and NCAR
 - Delivered the model data for the IPCC AR 4 (WG 1)
 - Changed the World
- Ongoing CCWG Research

ESG data services have been a huge win for us...

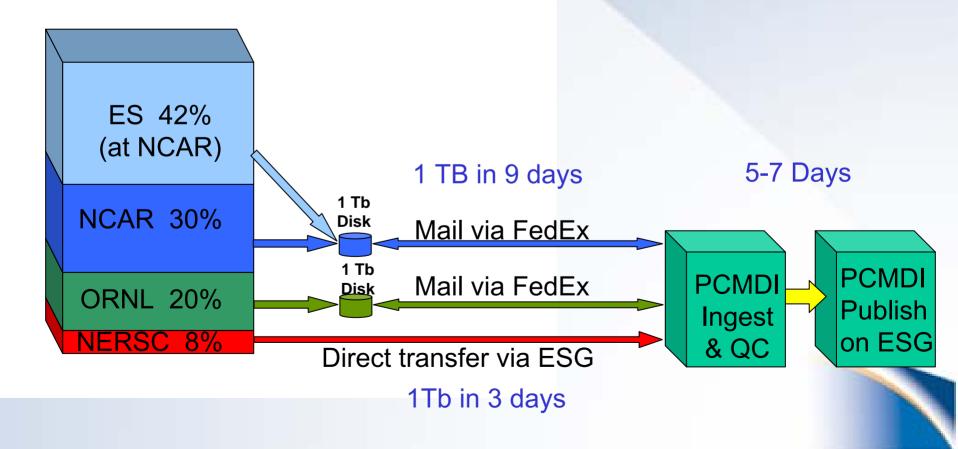

- Promoted use of data/metadata standards & richer metadata
- Much cheaper, easier and effective
- Allows us to reach huge new research/app communities (GIS)

Briefing on Results: USGS Science Strategy to Support U.S. Fish & Wildlife Service Polar Bear Listing Decision: a 6 month effort

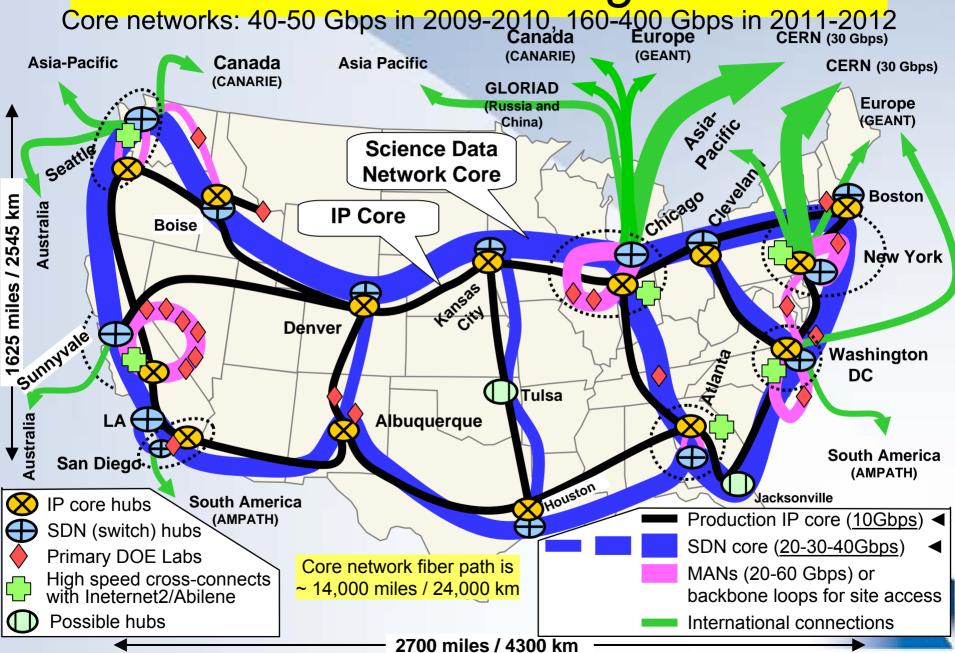
U.S. Department of the Interior U.S. Geological Survey


Habitat Change Projection: 2001-2010 to 2041-2050

IPCC/CMIP4 Models 1 bccr bcm2 0 2 cccma_cgcm3_1 3 cccma_cgcm3_1_t63 4 cnrm cm3 5 csiro mk3 0 6 gfdl cm2 0 7 gfdl_cm2_1 8 giss_aom 9 giss_model_e_r 10 iap_fgoals1_0_g 11 inmcm3 0 12 ipsl cm4 13 miroc3_2_hires 14 miroc3 2 medres 15 miub_echo_g 16 mpi_echam5 17 mri_cgcm2_3_2a 18 ncar $\operatorname{ccsm} 3 0$ 19 ukmo_hadcm3 20 ukmo hadgem1

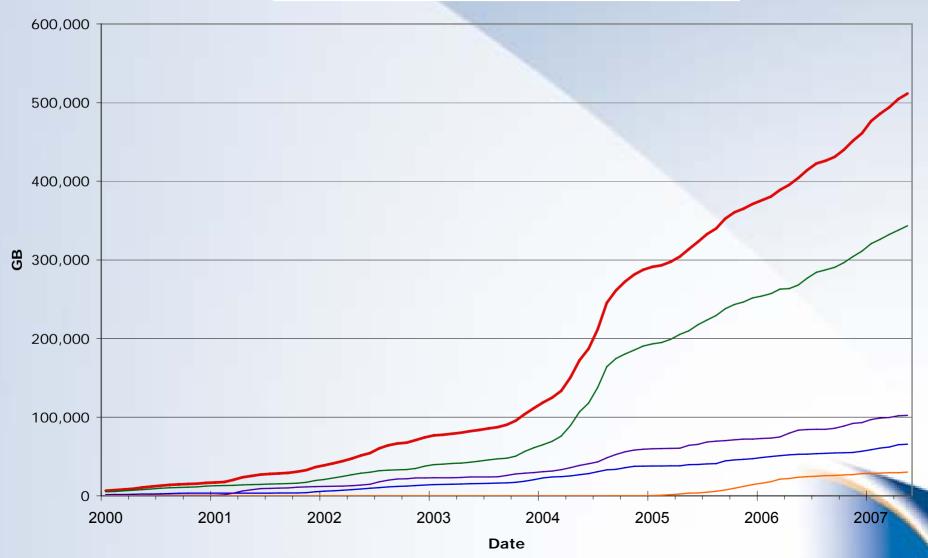


CCSM IPCC Run Process

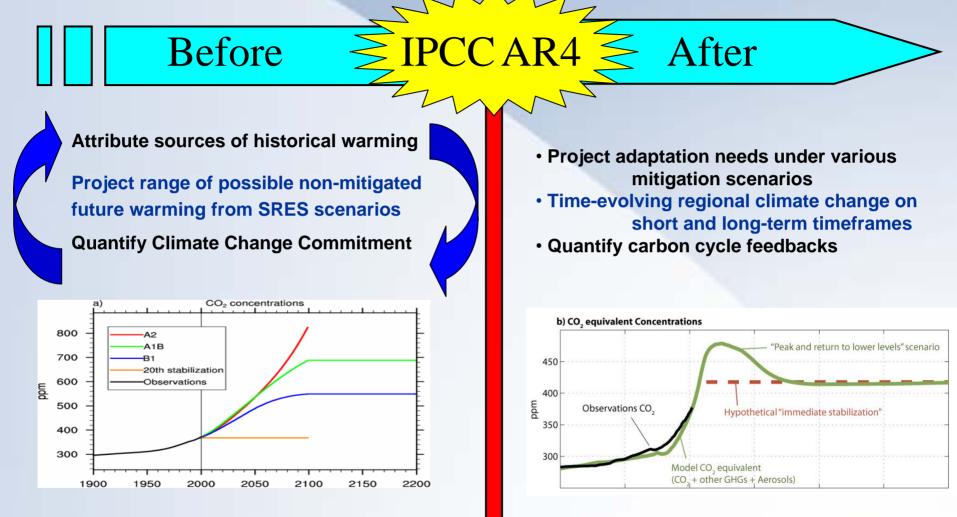


IPCC Data Transfer Process

- 100+ Tb total data volume
- 25-30 Tb to IPCC data archives at LLNL/PCMDI



DOE ESnet4 Configuration



Archival Holdings and ESG Downloads

Climate Change Epochs

Conclusion: With the wide public acceptance of the IPCC AR4 findings, the climate science community is now facing the new challenge of quantifying time evolving regional climate change that human societies will have to adapt to under several possible mitigation scenarios, as well as addressing the size of carbon cycle feedbacks with more comprehensive Earth System Models

DOE CCRD Directions

- Less emphasis on climate change detection and attribution
- More emphasis on decision support for policy makers
 - provide decision-makers with scientific information on "acceptable" target
 levels for stabilizing atmospheric CO2
 - possible adaptation and mitigation strategies for the resulting climates before or after stabilization.

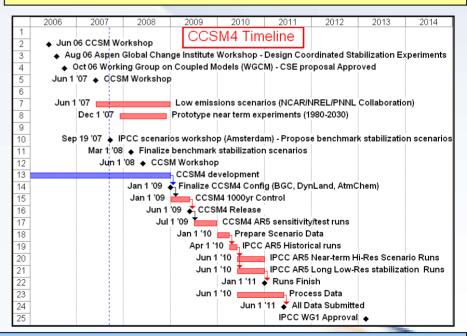
"Long Term Measure" for DOE Climate Change Research

Deliver improved scientific data and models about the potential response of the Earth's climate and terrestrial biosphere to increased greenhouse gas levels for policy makers to determine safe levels of greenhouse gases in the atmosphere.

Imperative post IPCC: Improved climate/earth system models for regional prediction.

What does a 2° C rise imply in terms of regional change and impacts? Where to place century-scale hydroelectric investments in an evolving climate?

Future Plans


1	NCAR: Analysis of climate variability: Forced vs unforced decadal variability, extremes, water cycle, Arctic & North Atlantic Oscillation, Large Ensembles			
6	VCAR: Analysis of specified hurricane simulations			
F	VERSC: 1000 Year CCSM4 Biogeochemistry Control Run:			
•	C & N cycles + dynamic vegetation w/ BGCWG 2x2			
	: Low emissions scenarios T85 CCSM3.0			
	VERSC: Aerosol indirect forcing FV? CCSM3.5+			
2000	DRNL: Climate Change 2100 & beyond			
	DRNL: High Resolution Historical (1870-2000)			
1	ORNL: Prognostic carbon aerosol forcing			
	DRNL: Fully coupled ice sheet runs			
	ORNL: Near-term climate predictions (1980-2030)			
	ORNL: Special DOE US energy strategy scenarios			
	NCAR: Analysis of climate variability: NSF Climate change detection/attribution			
	NCAR: Signal-to-noise detection in forced simulations			
	NCAR: Analysis of specified hurricane simulations			
	NERSC: CCSM4 AR5 sensitivity/test runs:			
2009	Equilibrium climate sensitivity			
CCWG/CCP - CCSM4 Relea - AR5 prepara				
Research	ORNL: High-resolution near-term			
	climate predictions (1980-2030)			
2008-2012	ORNL: Special DOE Scenarios for US energy strategies			
Aug 14 2007				
ALL:	IPCC AR5 Simulations			
NCAR:				
	breakdown threshold: Role of aerosols			
NCAR:				
	and attribution including regional effects of urbanization.			
1 2010	IPCC AR5: Adaptation and Mitigation Scenarios			
	: IPCC AR5: Long-term stabilization Scenarios : Geographic conceptations of probabilistic climate change			
ORNL:				
ORNL:				
ORNL:	Speci Speci			
NCAR	Clim			
incom.	and			
2011-2012 NERSC				
- Very high ORNL:				
Resolution	near-			

The current model development timeline anticipates CCSM4 in 2009 in time to participate in the next set of internationally coordinated mitigation scenario experiments in 2010-2011

short term climate change: 30-year climate predictions at higher resolution and a single scenario

long term climate change: 300-year climate change simulations at medium resolution and carbon cycle for benchmark mitigation scenarios

A next-generation Earth System Model will also be under development during this time period.

The overarching goal is to ensure that CCSM plays a substantial and credible leadership role in climate change science, and makes substantial contributions to national and international coordinated climate change experiments and assessments

	2007 20	08 2009	2010 I	2011	2012 I	2013	2014
	Preparatory phase	PHASE 1	******	PHASE 2		PHAS	E 3
ESM		Earth system modelling using CECPs		Earth system modelling using new scenarios		Earth system modelling using new scenarios	
IAM	Selection and delivery of Community Emissions and Concentration Pathways (CECPs)	y demographic, socio-economic, nd land use, technology and n emissions scenarios		Development of <i>ne</i> <i>integrated</i> demogra socio-economic, lar technology and emi scenarios	aphic, dialage aphic, dialage aphic, dialage aphic, dialage approximately a	Development of <i>new fully</i> <i>integrated</i> demographic, socio-economic, land use, technology and emissions scenarios	
IAV	Assist in selecting CECPs Initiate discussion on IAV organisation Begin search for funding partners	Establish IAV steering Identify contact institu Create regional nodes Inform IAV community Plan public IAV reposi	tion I tory I I I I I I I	Format scenario info Identify "marker" sc Develop tools and g Develop regional sto Fix baselines/base c Establish IAV reposit Register for reposito Carry out IAV studie Hold periodic works Report initial results Meta-analysis of IAV	enarios uidance orylines tory tory s s hops	Evaluate, inter-con synthesize and rep Initiate new or cor ongoing IAV stud	port results

Jerry Meehl, NCAR

Lessons Learned 4. Effective Data Distribution Systems Require Sustained Investment

- Initially Chepp
- \$\$5 in long term
- Limited Scale

Institutional Data Portal

Earth System Grid

- Modest Investment
- Agile and Right-sized for Many Projects
- Institutional Scale

- Large Investment
- Infrastructure for Large Projects
- Spans Institutions