GRIB naming in CDM

John Caron and Ethan Davis 4/2/2012

Outline

GRIB background and issues

Questions

- What is best naming scheme for GRIB / netCDF library ?
- What is best way for applications to present variable selections to users ?
- What to do about backwards compatibility?

Options

GRIB Background

- WMO standard for gridded meteorological data
- NCEP uses exclusively for transmitting model output
- All IDD model data is in GRIB
- GEMPAK converts to GEMPAK format with handmaintained table (NCEP only?)
- CDM aspires to be general purpose GRIB reader
- IDV reads GRIB through the CDM library

GRIB in CDM

Problems in GRIB discovered 2010 (CDM 4.2.4)

- Time interval coordinates affected 25% NCEP
- NCEP local tables were always used (GRIB2)
- Many errors in local tables use (esp GRIB1)
- Mistakes in standard WMO tables
- Variable naming algorithm was flawed
- Etc.

NCDC \$\$ for serving large collection of GRIB

- eg Climate Forcast System Reanalysis (CFSR)
- eg hpr-ts45 contains 1.2M files, 250M records
- Complete rewrite of GRIB for TDS 4.3
 - Complete review of all things GRIB

GRIB Issues Summary

- 1. GRIB does not encode the "dataset schema"
 - No unique identifier for variables
- 2. GRIB tables are serious problem
 - No canonical GRIB tables
 - Inconsistent use of local tables
 - No foolproof way of knowing which tables were used when writing the GRIB file
 - GRIB parameter names are not required to be unique, short or stable.

No "dataset schema"

- GRIB data model is an unordered collection of 2D (horiz) slices. Each GRIB record stands alone.
 - There is no way for a data provider to describe the dataset schema = "ncdump –h" (show netCDF header)
- To create netCDF multidimensional data model:
 - Decide which records belong in a variable
 - Construct time, vert, ensemble coordinates

No unique variable identifier

- A GRIB record has a collection of attributes
 - Parameter (discipline / category / number)
 - Level Type (pressure, surface, pressure layers, etc)
 - Level Value(s)
 - Base Time (typically the model run time)
 - Forecast Time type (instantaneous or interval)
 - Forecast Time value(s)
 - Background Generating Process, Forecast Generating Process, Ensemble derived type, Probability type, ...
 - Etc.
- GRIB2 has ~30 PDS templates, each with 10-20 attributes
- To create netCDF data model
 - Decide which attributes from which templates are used to create unique variables
 - See if that works on as many datasets as possible

GRIB names in GFS (partial list)

Latent heat net flux (Mixed_intervals Average) @ Ground or water surface	64,361,720	time1,lat,lon
Sensible heat net flux (Mixed_intervals Average) @ Ground or water surfa	64,361,720	time1,lat,lon
Specific humidity @ Specified height level above ground	65,1,361,720	time,height_above_grou
Specific humidity @ Level at specified pressure difference from ground to	65,1,361,720	time,pressure_differend
Relative humidity @ Level of 0°C isotherm	65,361,720	time,lat,lon
Relative humidity @ Isobaric surface	65,25,361,720	time,pressure3,lat,lon
Relative humidity @ Specified height level above ground	65,1,361,720	time,height_above_grou
Relative humidity @ Sigma level layer	65,4,361,720	time,sigma_layer,lat,lor
Relative humidity @ Sigma level	65,1,361,720	time,sigma,lat,lon
Relative humidity @ Level at specified pressure difference from ground t	65,1,361,720	time,pressure_differend
Relative humidity @ Entire atmosphere layer	65,361,720	time,lat,lon
Relative humidity @ Highest tropospheric freezing level	65,361,720	time,lat,lon
Precipitable water @ Entire atmosphere layer	65,361,720	time,lat,lon
Precipitation rate (Mixed_intervals Average) @ Ground or water surface	64,361,720	time1,lat,lon
Total precipitation (Mixed_intervals Accumulation) @ Ground or water sur	65,361,720	time2,lat,lon
Convective precipitation (Mixed_intervals Accumulation) @ Ground or wat	65,361,720	time2,lat,lon
Water equivalent of accumulated snow depth @ Ground or water surface	65,361,720	time,lat,lon
Cloud mixing ratio @ Isobaric surface	65,21,361,720	time,pressure1,lat,lon

GRIB Parameter Tables

Parameter == (discipline / category / number bytes)

Look up in an external table, either WMO standard table or a local table

No canonical machine-readable GRIB parameter tables

- WMO publishes in MS Word format (recently also started publishing GRIB2 tables in XML)
- Some mistakes and inconsistencies in standard
- Other mistakes and variations from hand-transcribing
- There are no 2 identical copies of WMO tables anywhere

Inconsistent use of local tables

No foolproof way of knowing which tables were used when writing the GRIB file

On the suitability of BUFR and GRIB for archiving data http://www.unidata.ucar.edu/staff/caron/papers/GRIBarchivals.pdf

Official GRIB-2 tables (pdf)

Product Discipline 2: Land surface products, Parameter Category 0: Vegetation/Biomass

Number	Parameter	Units
0	Land cover (1=land, 0=sea)	Proportion
1	Surface roughness	m
2	Soil temperature	K
3	Soil moisture content*	kgm ⁻²
4	Vegetation	%
5	Waterrunoff	kgm ⁻²
6	Evapotranspiration	kg ⁻² s ⁻¹
7	Model terrain height	m
8	Landuse	code table (4.212)
9	Volumetric soil moisture content**	Proportion
10	Ground heat flux*	W m ⁻²
11	Moisture availability	%
12	Exchange coefficient	kg m ⁻² s ⁻¹
13	Plant canopy surface water	kg m ⁻²
14	Blackadar's mixing length scale	m
15	Canopy conductance	m s ⁻¹
16	Minimal stomatal resistance	s m ⁻¹
17	Wilting point**	Proportion
18	Solar parameter in canopy conductance	Proportion
19	Temperature parameter in canopy conductance	Proportion
20	Soil moisture parameter in canopy conductance	Proportion
21	Humidity parameter in canopy conductance	Proportion
22	Soil moisture	kgm ⁻³
23	Column-integrated soil water	kgm ⁻²
24	Heat flux	W m ⁻²

:enter_id	S	ubcenter_id	version	center		
0)	-1	-	1 WMO standard table	1	
7	'	-1	12	8 US National Weather Service - National Centres for Environmental Prediction	(NCEP)	
7	r	-1	12	9 US National Weather Service - National Centres for Environmental Prediction	(NCEP)	
7	'	-1	13	US National Weather Service - National Centres for Environmental Prediction	(NCEP)	
7	'	-1	13	1 US National Weather Service - National Centres for Environmental Prediction	(NCEP)	
7	'	-1	13	3 US National Weather Service - National Centres for Environmental Prediction	(NCEP)	
7	'	-1	14	US National Weather Service - National Centres for Environmental Prediction	(NCEP)	
7	7 -1		14	1 US National Weather Service - National Centres for Environmental Prediction (NCEP)		
7	'	-1	-	1 US National Weather Service - National Centres for Environmental Prediction	(NCEP)	
9)	-1	12	BUS National Weather Service - Other	1	
57	'	-1		2 US Air Force - Air Force Global Weather Central		
58	3	42		2 Fleet Numerical Meteorology and Oceanography Center, Monterey, CA, USA		
58	1	-1	_	1 Fleet Numerical Meteorology and Oceanography Center, Monterey, CA, USA	i	
60)	255		2United States National Center for Atmospheric Research (NCAR)		
74	i	-1	17	4UK Meteorological Office - Exeter (RSMC)	i	
74	i	-1	17	5UK Meteorological Office - Exeter (RSMC)		
80)	-1	20	1 Rome (RSMC)		
85	,	-1	12	8 Toulouse (RSMC)		
98	2	-1	12	8 European Centre for Medium-Range Weather Forecasts (ECMWE) (RSMC)		
98	2	-1	12	PEuropean Centre for Medium-Range Weather Forecasts (ECMWF) (RSMC)		
90	2	-1	12	European Centre for Medium-Range Weather Forecasts (ECMWF) (RSMC)		
		-1	13	European Centre for Medium-Range Weather Forecasts (ECMWF) (RSMC)		
00	2	-1	13	3 European Centre for Medium-Range Weather Forecasts (ECMWF) (RSMC)		
		-1	13	European Centre for Medium-Range Weather Forecasts (ECMWF) (RSMC)		
98	3	-1	15	DEuropean Centre for Medium-Range Weather Forecasts (ECMWF) (RSMC)		
num	ber	WI	MOdesc	description		
	55	Vapor pressure		Vapor pressure	water_vapor_p	
	56	Saturation deficit		Saturation deficit	water_vapor_s	
	57	Evaporation		Evaporation	water_evapora	
	58	Cloud ice		Cloud ice	atmosphere_c	
	59	Precipitation rate		Precipitation rate	precipitation_fl	
	60	Thunderstorm pro	bability	Thunderstorm probability	thunderstorm_	
	61	Total precipitation		Total precipitation	precipitation_a	
	62	Large scale precip	pitation	Large scale precipitation	large_scale_p	
	63	Convective precipi	tation	Convective precipitation	convective_pre	
	64	Snowfall rate wate	r equivalent	Snowfall rate water equivalent	snowfall_flux	
	65	Water equivalent o	f accumulated snow	Water equivalent of accumulated snow depth	surface_snow	
	66	Snow depth		Snow depth	surface_snow	
	67	Mixed layer depth		Mixed layer depth	ocean_mixed_	
	68	Transient thermod	line depth	Transient thermocline depth		
	69	Main thermocline	depth	Main thermocline depth		
	70	Main thermocline	anomaly	Main thermocline anomaly		
	71	Total cloud cover		Total cloud cover	cloud_area_fra	
	72	Convective cloud of	over	Convective cloud cover	convective_clo	
	73	Low cloud cover		Low cloud cover		
	74	Medium cloud cov	er	Medium cloud cover		
	75	High cloud cover		High cloud cover		
	76	Cloud water		Cloud water	atmosphere_c	
	77	Best lifted index to	500 hPa	Best lifted index to 500 hPa		

number=65, name='null', description='Water equivalent of accumulated snow depth', unit='kg.m-2'} from WMO GRIB1.xml (-1 number=65, name='WEASD', description='Water equiv of accum snow depth', unit='kg/m2'} from ncepGrib1-2.xml (-920240846) number=65, name='ttl snow', description='The estimated depth of the snow water equivalent that accumulated over a fixed ccumulation period ends a snap-shot is taken grid made and then the accumulation is set to zero the bucket tip The accu me for each grid Grids are available at forecast hours that are multiples of the accumulation period One or more accumu grids for each accumulation period for that forecast hour If period attribute is specified the response will contain da lation period is every 3 hours For NOGAPSEnsemble the accumulation period is every 6 hours', unit='kg/m2'} from US058MM number=65, name='None', description='convective mass flux', unit='kg.s-1.m-2'} from local table 2 version 201 (-1599351 number=65, name='-', description='Skin temperature difference', unit='K'} from ECMWF local table 2: Version Number 128 number=65, name='-', description='Skin temperature difference', unit='K'} from ECMWF local table 2: Version Number 129 number=65, name='TPRL1', description='Total precipitation rate less than 1 mmday', unit='%'} from ECMWF local table 2: number=65, name='-', description='Skin temperature difference', unit='K'} from ECMWF local table 2: Version Number 171 number=65, name='-', description='Skin temperature difference', unit='K'} from ECMWF local table 2: Version Number 200 number=65, name='-', description='convective mass flux', unit='kg.s-1.m-2'} from ECMWF local table 2: Version Number 20 number=65, name='TCCH4', description='Total column Methane', unit='kg.m-2'} from ECMWF local table 2: Version Number 21 number=65, name='SF', description='Water equivalent of accumulated snow depth', unit='kg.m-2'} from WMO standard table number=65, name='SF', description='Water equivalent of accumulated snow depth', unit='kg.m-2'} from WMO standard table number=65, name='SF', description='Water equivalent of accumulated snow depth', unit='kg.m-2'} from WMO standard table number=65, name='SF', description='Water equivalentof accumulated snow depth', unit='kg.m-2'} from WMO standard table 2 number=65, name='SF', description='Water equivalentof accumulated snow depth', unit='kg.m-2'} from Table 2 standard OMM number=65, name='WENV', description='WAT EQUIV ACC SNOW DEPTH', unit='kg/m2'} from cptec 254 gtb.h (363285314) number=65, name='W SNOW', description='water equivalent of accumulated snow depth', unit='kg/(m2)'} from dwd 002 gtb.h number=65, name='MASS FL CO', description='convective mass flux', unit='kg/(s.m2)'} from dwd 201 gtb.h (-993837869) number=65, name='VIO3', description='total vertically integrated ozone content', unit='Pa'} from dwd 202 gtb.h (1272743 number=65, name='SN DEPWE S', description='water equivalent of accum snow depth smoothed', unit='kg/(m2)'} from dwd 206 number=65, name='SN DEPWE C', description='water equivalent of accum snow depth calibrated', unit='kg/(m2)'} from dwd 2 number=65, name='', description='Skin temperature difference', unit='K'} from ecmwf 128 gtb.h (531848967) number=65, name='', description='Skin temperature difference', unit='K'} from ecmwf 129 gtb.h (-1581303727) number=65, name='TPRL1', description='Total precipitation rate less than 1 mm per day', unit='%'} from ecmwf 131 gtb.h number=65, name='HCCPG30', description='High Cloud Cover probability greater than 30%', unit='%'} from ecmwf 133 gtb.h number=65, name='VIEMF', description='Vertical integral of eastward mass flux', unit='kg.m-1.s-1'} from ecmwf 162 gtb.h number=65, name='', description='Skin temperature difference', unit='K'} from ecmwf 171 gtb.h (-1943412381) number=65, name='', description='Skin temperature difference', unit='K'} from ecmwf 200 gtb.h (70217622) number=65, name='', description='convective mass flux', unit='kg.s-1.m-2'} from ecmwf 201 gtb.h (-1272748388) number=65, name='TCCH4', description='Total column Methane', unit='kg.m-2'} from ecmwf 210 gtb.h (1167124613) number=65, name='WEASD', description='water equivalent of accumulated snow depth', unit='kg/m/m'} from fnmoc gtb.h (596 number=65, name='WEASD', description='Water equivalent of accumulated snow depth', unit='kg/m2'} from fs10 gtb.h (-1162 number=65, name='WEASD', description='Water equivalent of accumulated snow depth', unit='kg/m2'} from fsl1 gtb.h (-1168 number=65, name='WEASD', description='Water equivalent of accumulated snow depth', unit='kg/m2'} from fsl2 gtb.h (-1168 number=65, name='SNWE', description='Water equivalent snow depth', unit='m'} from jma 3 gtb.h (290430085)

Proposed BUFR/GRIB Table registration

- Registered users can upload BUFR/GRIB tables
 - Unique id is assigned (MD5 16 byte checksum?)
 - Convince producers to include the id into the data unambiguous which table was used
 - Anyone can download.
- Reference GRIB and BUFR Decoding
 Using CDM find bugs !
- Could be Unidata developed web service
 - Turn over to WMO if they want it
- Survival of Human Race is at stake here

Question: What is best variable naming scheme for a general GRIB reader?

- Variable names have to be unique, not too long, and stable
- GRIB parameter tables are not
- Option: hand maintained tables
 - Doesn't scale, could only be done for a subset, eg NCEP
 IDD model data
- Option: seperate variable names from descriptions
 - Generate variable names from just the records, not the external tables
 - Generate descriptions from the external tables
 - NCL has chosen a similar path to this solution

			_
е	name	description	
	time3_bounds	bounds for time3	1,2
	VAR_0-0-0_L1	Temperature @ Ground or water surface	1,2
	VAR_0-0-0_L7	Temperature @ Tropopause	1,2
	VAR_0-0-0_L100	Temperature @ Isobaric surface	1,3
	VAR_0-0-0_L103	Temperature @ Specified height level above ground	1,2
	VAR_0-0-0_L105	Temperature @ Hybrid level	1,1
	VAR_0-0-0_L108_layer	Temperature @ Level at specified pressure difference from ground to lev	1,6
	VAR_0-0-3_L1	Pseudo-adiabatic potential temperature or equivalent potential temperatu	1,2
	VAR_0-0-6_L103	Dew-point temperature @ Specified height level above ground	1,1
	VAR_0-1-0_L103	Specific humidity @ Specified height level above ground	1,2
	VAR_0-1-0_L105	Specific humidity @ Hybrid level	1,1
	VAR_0-1-1_L4	Relative humidity @ Level of 0°C isotherm	1,2
	VAR_0-1-1_L100	Relative humidity @ Isobaric surface	1,3
	VAR_0-1-1_L103	Relative humidity @ Specified height level above ground	1,1
	VAR_0-1-1_L108_layer	Relative humidity @ Level at specified pressure difference from ground to	1,6
	VAR_0-1-1_L204	Relative humidity @ Highest tropospheric freezing level	1,2
	VAR_0-1-3_L200	Precipitable water @ Entire atmosphere layer	1,2
	VAR_0-1-7_L1	Precipitation rate @ Ground or water surface	1,2
	VAR_0-1-9_L1_Imixed_S1	Large-scale precipitation (non-convective) (Mixed_intervals Accumulation)	3,2
	VAR_0-1-10_L1_Imixed_S1	Convective precipitation (Mixed_intervals Accumulation) @ Ground or wat	3,2
	VAR_0-1-11_L1	Snow depth @ Ground or water surface	1,2
	VAR_0-1-13_L1	Water equivalent of accumulated snow depth @ Ground or water surface	1,2
	VAR_0-1-13_L1_I2_Hour_S1	Water equivalent of accumulated snow depth (2_Hour Accumulation) @ G	1,2
	VAR_0-1-22_L100	Cloud mixing ratio @ Isobaric surface	1,3
	VAR_0-1-22_L105	Cloud mixing ratio @ Hybrid level	1,1
	VAR_0-1-24_L100	Rain mixing ratio @ Isobaric surface	1,3
	VAR_0-1-25_L100	Snow mixing ratio @ Isobaric surface	1,3
	VAR_0-1-32_L100	Graupel (snow pellets) @ Isobaric surface	1,3
	VAD 0 1 102 1 1	Catagorical Rain @ Cround or water surface	1.0

Mistake in CDM 4.2 variable naming

Temperature @ pressure	65,26,361,720
Temperature @ altitude_above_msl	65,3,361,720
Temperature @ depth_below_surface_layer	65,4,361,720
Temperature @ height_above_ground	65,1,361,720
Temperature_Average (Average for Mixed Intervals) @ high_cloud_top	64,361,720
Temperature_Average (Average for Mixed Intervals) @ low_cloud_top	64,361,720
Temperature @ maximum_wind	65,361,720
Temperature_Average (Average for Mixed Intervals) @ middle_cloud_top	64,361,720
Temperature @ potential_vorticity_surface	65,2,361,720
Temperature @ pressure_difference_layer	65,1,361,720
Temperature @ sigma	65,1,361,720
Temperature @ surface	65,361,720
Temperature @ tropopause	65,361,720
Total_cloud_cover_Average (Average for Mixed Intervals) @ boundary_la	64,361,720
Total_cloud_cover @ convective_cloud	65,361,720
Total_cloud_cover_Average (Average for Mixed Intervals) @ entire_atmo	64,361,720
Total_cloud_cover_Average (Average for Mixed Intervals) @ high_cloud	64,361,720
Total_cloud_cover_Average (Average for Mixed Intervals) @ low_cloud	64,361,720
Total_cloud_cover_Average (Average for Mixed Intervals) @ middle_cloud	64,361,720
Total_ozone @ entire_atmosphere	65,361,720
Total_precipitation_Accumulation (Accumulation for Mixed Intervals) @ s	65,361,720
U-Component_Storm_Motion @ height_above_ground_layer	65,1,361,720
U-component_of_wind @ pressure	65,26,361,720
U-component_of_wind @ altitude_above_msl	65,3,361,720
	Temperature @ pressure Temperature @ altitude_above_msl Temperature @ height_above_ground Temperature_Average (Average for Mixed Intervals) @ high_cloud_top Temperature_Average (Average for Mixed Intervals) @ low_cloud_top Temperature @ maximum_wind Temperature @ potential_vorticity_surface Temperature @ potential_vorticity_surface Temperature @ sigma Temperature @ sigma Temperature @ sigma Temperature @ tropopause Total_cloud_cover_Average (Average for Mixed Intervals) @ boundary_la Total_cloud_cover_Average (Average for Mixed Intervals) @ high_cloud Total_cloud_cover_Average (Average for Mixed Intervals) @ middle_cloud Total_cloud_cover_Average (Average for Mixe

Question : What is best way for applications to present variable selections to users?

NetCDF (4.3)	3) Tools		And Andrews	and the second	and
<u>System</u> Mo	🗢 Grid	Viewer			
Viewer N	Dataset	· O·/arid/hwrf	pre/wrfout_d01_2008_08_30_183036		
Grids	Dutuset				
	Datase	et <u>C</u> onfigure	Controls T02_MIN == Hourly Min Shelter Temperature		2008-08-30 18:30:36Z
dataset: Q:/gr			1 1 11 (3 67 22		
			T 🐜 🎞 🕥 🙃 🗖		
LU_INDEX	horiz	Crid Table			
PDYN	2311.0	S Grid Table	Information		A CALL AND A
MSLP	101112	Name	▽ Long Name	Units	
RANDOM		DX_NMM	East-west distance H-to-V points	m 🔺	
IIH	311.0	EPSR	Radiative emissivity		
JJH		FIS	Surface geopotential	m2 s-2	
IIV		GRDFLX	GROUND HEAT FLUX		
JJV	308.4	GRNFLX	Deep soil heat flux	W m-2 —	
HBWGT1		HANGL	Angle of the mountain range w/r/t east	deg 😑 💕	
HBWG12		HANIS	Anisotropy/aspect ratio of orography		
HBWG13	305.8	HASYNW	Orographic asymmetry in NW-SE plane		New 💩 State (State 🔨 State) 🔪
HBWG14		HASYS	Orographic asymmetry in S-N plane		
VBWGT1		HASYSW	Orographic asymmetry in SW-NE plane		
VBWG12	303.1	HASYW	Orographic asymmetry in W-E plane		
VBWG13		HBM2	Height boundary mask; =0 outer 2 rows on H points		and the second
VBWG14		HBM3	Height boundary mask; =0 outer 3 rows on H points		
HLON	300.5	НВОТ	BOT OF CONVECTION LEVEL		
		HBOTD	BOT DEEP CONVECTION LEVEL		
VLON		HBOTS	BOT SHALLOW CONVECTION LEVEL		
HBM2	297.8	HBWGT1	-		
HBM3		HBWGT2	-		
VBM2		HBWGT3	-		
	295.2	HBWGT4	-		
		HCNVX	Normalized 4th moment of orographic convexity	💌	

Answer : Both variable name and description must be used

🗢 Grid Vi	iewer						
Dataset: Q:/grid/hwrf_pre/wrfout_d01_2008-08-30_183036							
Dataset	<u>C</u> onfigure Con <u>t</u> rols	LU_INDEX == LAND USE CATEGORY	2008-08-30_18:30:36Z	1; = 0 3 9	३३音 ०४<		
horiz ▼ >24.0	m	field LU_INDEX == LAND USE CATEGORY PDYN == DYNAMIC PRESSURE USED FOR TRACKING GRID MOTION MSLP == MSLP USED TO DETERMINE STORM LOCATION			i Sand		
24.0		RANDOM == RANDOM NUMBER FOR SAS IIH JJH IIV			2		
22.28		HBWGT1 HBWGT2			B		
20.57		HBWGT3 HBWGT4					
18.85			Rest State	No.			
17.14				3			
15.42			for the second of the second o	~			
13.71							
12.00	◊						
10.28							
8.671							
6.857							

Question: What to do about backwards compatibility?

- ~ 20 % of variable names have to change in order to fix the "too clever" naming algorithm
- Option: break 20%, create maps to the old names and do a translation, hand maintain tables so nothing ever changes
- Option: break everything at once, create tools to translate bundles (etc) to new names once

Reality Check

- Variable names (GRIB parameter names, WRF model output, etc) will continue to change in the future
- Applications have to be able to gracefully deal with change (especially applications that use web resources)
- Can't depend on variable names being meaningful in netCDF files

Technical Debt

"Shipping code is like going into debt. A little debt speeds development so long as it is paid back promptly with a rewrite...

"The danger occurs when the debt is not repaid. Every minute spent on not-quite-right code counts as interest on that debt.

"Entire engineering organizations can be brought to a stand-still under the debt load of an unconsolidated implementation"

Ward Cunningham

Technical Debt at Unidata

- Code is difficult to maintain/change except by the original programmers.
 - Bring new people on, give them ownership, refactor
- Build is brittle, cannot easily be replicated on another machine
 - Switching to maven for standard builds
- Bundles (etc) cant tolerate changes in the referenced datasets (URLs, names, etc)
 - Create tools to gracefully transition bundles

" all software dies when it becomes impossible to change without breaking something"

Conclusion

- Use of variables' names from GRIB records alone is ugly but are stable, short and unique
- Put information from GRIB tables into variable's descriptions
- Applications must use both names and descriptions when presenting selections to users
- Creating tools to help IDV bundles change gracefully would be a real benefit now and in the future, and would be part of a program of paying down Unidata technical debt