# GPU-Powered WRF in the Cloud for Research and Operational Applications

John Manobianco, Chief Scientist Don Berchoff, Chief Technical Officer john@tempoquest.com, don@tempoquest.com

2017 Modeling Research in the Cloud Workshop Boulder, Colorado 31 May 2017

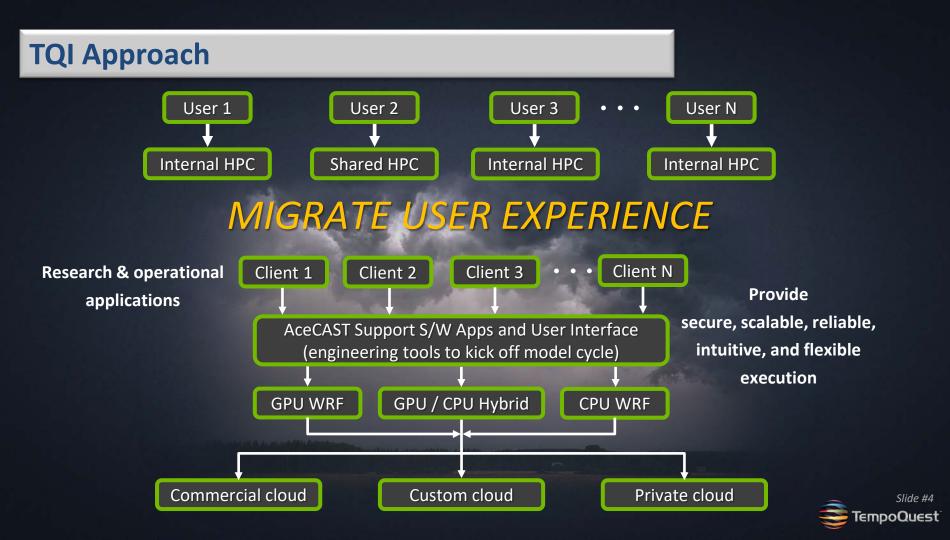
> Introduction Approach GPUs, GPU-Powered WRF Benchmarks, Challenges Summary, Q&A



# Who is TempoQuest, Inc. (TQI)?

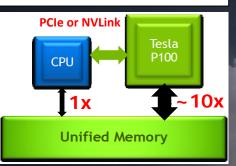
- Scientific and Visualization Software Company
  - Port applications from CPU hardware to NVIDIA Graphics Processing Units (GPUs)
  - Accelerate processing, ultimately enhancing precision and accuracy
    - First Product (AceCAST): Weather Research and Forecasting (WRF) Model
    - Target: 3x 10x acceleration, enable finer grid spacing, more ensembles, better physics, etc.
    - Parallel effort on accelerated visualization software (WSV3 Professional)
    - Future plans include other models, data assimilation, visual analytics, machine learning

#### • Platforms


- Client data center and/or commercial cloud
- Software As a Service (SaaS) in the commercial cloud



#### **Partners**


- Equity Investors (founders, venture capitalists)
- Space Sciences and Engineering Center (SSEC; University of Wisconsin, Madison)
  - Software development / testing
- NVIDIA
  - Investor
  - Access to development hardware
  - Subject matter expertise
  - Software testing, integration, benchmark
  - Marketing, sales, and distribution assistance for GPU forecast products





# **NVIDIA Graphics Processing Unit (GPU)\***

#### **GPU Introduction**

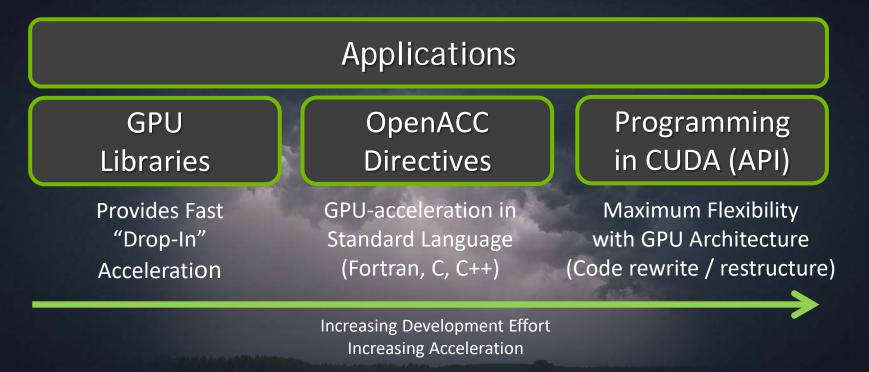


- Co-processor to the CPU
- Threaded Parallel (SIMT)
- CPUs: x86 | Power | ARM
- HPC Motivation:
  - Performance
  - Efficiency
  - Cost Savings



Peak Double Precision FLOPS

| 8000         | GFLOPS |                |           |                                       |
|--------------|--------|----------------|-----------|---------------------------------------|
| 7000         | Year   | Machine        | Cores     |                                       |
| 0000         | 2011   | M2090          | 512       | Volta                                 |
| 6000<br>5000 | 2012   | K20            | 2496      | /                                     |
|              | 2013   | K40            | 2880      | · · · · · · · · · · · · · · · · · · · |
| 0000         | 2014   | K80            | 2496      | /                                     |
| 4000         | 2016   | Pascal         | 3584      | 4                                     |
| 3000         |        |                |           | Pascal                                |
| 2000         | - 19 A | K20            | K40 K80   |                                       |
| 1000         | M1069  | M2090          |           |                                       |
| 0            |        |                | 2013 2014 | 2015 2010 2017                        |
|              |        | 2010 2011 2012 | 2013 2014 | 2015 2016 2017<br>6 CPU               |




**IMAGE:** Facebook's new Big Sur GPU server http://venturebeat.com/2016/08/29/facebook-gives-away-22more-gpu-servers-for-a-i-research



\*Original slide contents from Stan Posey, HPC Program Manager, NVIDIA

## **Programming Strategies for GPU Acceleration\***



NOTE: Many applications include combination of these strategies

\*Original slide contents from Stan Posey, HPC Program Manager, NVIDIA



## **Benchmarks with WRF CUDA Modules**

- Module timing
  - Write driver routine for each module
  - Compare timing on CPU versus GPU
  - Examine accuracy of results
- Integrate one or more modules in full WRF model
  - Run realistic test cases on representative HPC hardware
  - Compare timing for CPU versus GPU+CPU versions
  - Compare output for scientific validation
    - Graphic fields
    - Dependent and derived variables averaged in space, time
    - Integrated quantities



# **Individual WRF Module Testing**

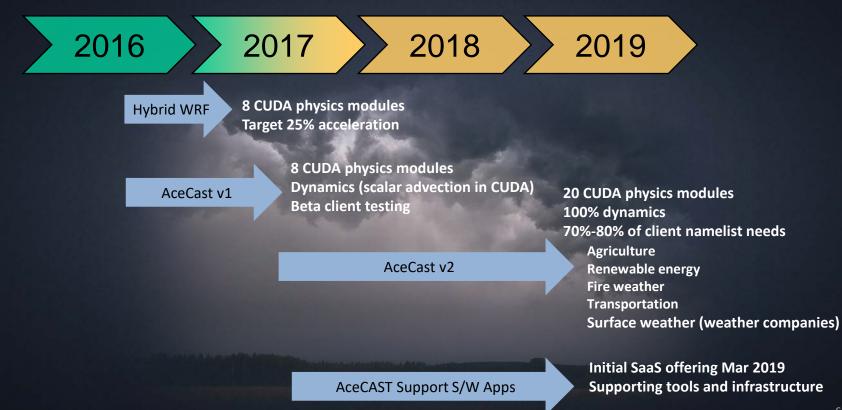
| Module                 | CUDA V3.6.1  | GPU Speed Up (w/wo I/O) | CUDA V3.8 |
|------------------------|--------------|-------------------------|-----------|
| Kessler MP             | $\checkmark$ | 70x / 816x              |           |
| Purdue-Lin MP          | $\checkmark$ | 156x / 692x             |           |
| WSM -3-class MP        | $\checkmark$ | 150x / 331x             |           |
| WSM 5-class MP*        | $\checkmark$ | 202x / 350x             |           |
| Eta MP                 | $\checkmark$ | 37x / 272x              |           |
| WSM 6-class MP*        | $\checkmark$ | 165x / 216x             |           |
| Goddard GCE MP         | $\checkmark$ | 348x / 361x             |           |
| Thompson MP*           | $\checkmark$ | 76x / 153x              |           |
| SBU 5-class MP         | $\checkmark$ | 213x / 896x             |           |
| WDM 5-class MP         | $\checkmark$ | 147x / 206x             |           |
| WDM 6-class MP         | $\checkmark$ | 150x / 206x             |           |
| RRTMG LW*              | $\checkmark$ | 123x / 127x             |           |
| RRTMG SW*              | $\checkmark$ | 202x / 207x             |           |
| Goddard SW             | $\checkmark$ | 92x / 134x              |           |
| Dudia SW*              | $\checkmark$ | 19x / 409x              |           |
| MYNN SL                | $\checkmark$ | 6x / 113x               |           |
| TEMF SL                | $\checkmark$ | 5x / 214x               |           |
| Thermal diffusion LS   | $\checkmark$ | 10x / 311x              |           |
| YSU PBL*               | $\checkmark$ | 34x / 193x              |           |
| Betts Miller Janjic CP |              |                         |           |

\*Previous NVIDIA-SSEC project



## **Integrated WRF Module Testing**

- 4 CUDA module integration w/ WRF V3.8
  - WSM6, Thompson MP, RRTMG SW, RRTMG LW
- NVIDIA PSG cluster (12 nodes), high speed InfiniBand
  - 384 CPU cores (Haswell chips, 16-cores per chip, 2 chips per node)
  - 48 GPUs (P100s, 4 per node)
- Tornado case (upper mid west and Ohio valley)
  - 2100 UTC 12 Jun 2013
  - 3-hour benchmark
  - 625 x 625 x 50 levels, 3-km grid
- Hybrid WRF (select physics modules on GPU, all other code on CPU)
  - 35% speed up WSM6, RRTMG SW, RRTMG LW
  - 38% speed up Thompson, RRTMG SW, RRTMG LW
- Use wrfdiff to compare statistics on U, V, W, P, etc. between CPU and GPU runs




# **Challenges Moving Forward**

- Software
  - Porting all code to GPUs
    - Avoid communication penalties: CPU ⇔ GPU
    - Not all modules benefit from conversion to CUDA (use OpenACC to get resident on GPU)
  - Sustainment (latest versus historical versions of WRF; why important?)
  - Portability and customization for specific generation of hardware
- Cloud
  - Various offerings, pricing, etc. from different vendors
  - Elastic computing (resources that are not permanent, but scalable)
  - Data and software management including storage
  - Reduce data transfer (bring applications and software to cloud) what about proprietary algorithms, sensitive, or classified data?
  - Lack of high speed interconnection (Infiniband)
  - Viable business model (ROI analysis, product pricing, profitability)



#### **Schedule and Milestones**





#### **Summary**

- Introduction to TempoQuest (TQI)
- TQI plans and progress to enable GPU-powered WRF in the cloud
  - Target 3x 10x acceleration
  - Broad user base with initial focus on 5 verticals (research and operations)
  - Provide SaaS with interface and application layers
  - Achieve 70%-80% of client namelist requirements by March 2019
- Software and Cloud Challenges
- Comments and Questions?

