
Cloud Parallelism and
Microservices for Science

Dennis Gannon
Prof. of CS Emeritus, School of Informatics and
Computing
Indiana University
&
Microsoft Research (retired)
www.esciencegroup.com

The Cloud Data Center Evolution
• Early days: 2005

• Very simple servers
• Network outward facing poor interconnect

• 2008-2016
• Software defined networks
• Special InfiniBand sub networks
• Many different server types

• 2 cores to 32 cores to GPU accelerations
• Efficiency experiments

• Geothermal, wind, wave
• Prefab clusters in shipping containers

• 2017
• Azure FPGA accelerated mesh
• Google Tensor Processing Unit
• Facebook – Open Compute Project
• ARM based servers

Azure and AWS Global Data Center Network

How to Scale in the Cloud: Models of Parallelism

• Classic HPC
• SPMD MPI programming

• MapReduce
• Hadoop style

• Graph Execution
• Spark and streaming systems

• Microservices
• Similar to actor model

Classic HPC

• AWS CloudFormation Cluster
• Fill out CfnCluster template
• Use aws command line to submit
• Log into head node

• Azure create a slurm cluster
• See Azure slurm tutorial

• Or use Azure Batch
• Similar to AWS batch

Map Reduce

• Map Reduce

• Bulk Synchronous Parallel (BSP)
• Distribute data over many nodes.

 (Hadoop Distributed File System)
• Map Task = an operation applied

to blocks of data in parallel
• Reduce Task- when maps are

“done” reduce the results to a
single result

The Hadoop- Yarn ecosystem
• Yarn is the name of a project containing many elements
• The runtime system is distributed
• Hadoop, Spark run in distributed mode
• Multiple clients can access the resource manager
• Jupyter and Zeppelin are interactive clients

• HDFS is the Hadoop File system
• Distributed over data node servers
• Files are blocked, distributed and replicated
• Files are write-once.

Graph Parallel Computation
• Graph Parallel

• The data is in distributed arrays or
streams.

• build a data flow graph of the algorithms
functions.

• The graph is compiled into parallel
operators that are applied to the
distributed data structures.

• Examples
• Spark data analytics
• Stream analytics with Kafka, Storm, Heron,

etc.
• Deep Learning

• Tensorflow from Google
• CNTK from Microsoft

Graph computation example: Spark
• A simple map reduce: Compute
• For n = 10,000,000
• In Spark on Python is:

import numpy as np

ar = np.arange(n)#an array from 0 to 9999999
numpart = 100

rdd = sc.parallelize(ar,numpart)

x = rdd.map(lambda i: 1.0/(i+1)**2)
 .reduce(lambda a,b: a+b)

print(“x=%f”%x)
print(“pi**2/6=%f”%(np.pi**2/6))

1.644934
1.644934

0 .. 99999 100000 .. 199999 200000 .. 399999 …. 900000 .. 999999

Spark Resilient Distributed Dataset (RDD)

map map map map

+ +

+

x

Graph executed on
distributed cluster

Value returned
to python

Microservices
• Cloud-native computation

• Divide a computation into small, mostly stateless
components that can be

• Easily replicated for scale
• Communicate with simple protocols

• Computation is as a swarm of communicating
workers.

• Examples
• Netflix, Google Docs, Azure services, eBay, Amazon,

the UK Government Digital Service, Twitter, PayPal,
Gilt, Bluemix, Soundcloud, The Guardian

• JetStream Genomics Docker swarm to spinup
container instance of Galaxy for users on demand

Microservices
• Typically run as containers using

a service deployment and
management service

• Amazon EC2 Container Service
• Google Kubernetes
• DCOS from Berkeley/Mesosphere
• Docker Swarm

• Major advantage:
• Resilience – designed for

continuous application operation
• Deployment can be modified on-

the-fly (dev-ops)

core 1 core 2 core 3 core .. core n

Container Service Cluster

Demo Example
• Processing Document streams

• Lots of RSS feeds describing recent scientific
documents

• Let’s classify them by topic
• Physics, Math, CS, Biology, Finance, …
• Then by subtopics

• By reading the abstracts and using a little
machine learning.

• Abstracts from Cornel Library ArXiv

• Building application steps
1. create a service cluster in the cloud
2. define services and interfaces
3. cuild each as an individual container
4. Create task descriptors

Document classifier application

Example document

• Title: Controls for a Pulsed Ion Accelerator Using Apache Cassandra
• ArXiv classification: physics.acc-ph
• Abstract: We report on updates to the accelerator controls for the Neutral

Drift Compression Experiment II, a pulsed accelerator for heavy ions. The
control infrastructure is built around a LabVIEW interface combined with
an Apache Cassandra (No-SQL) backend for data archiving. Recent
upgrades added the storing and retrieving of device settings into the
database, as well as adding ZMQ as a message broker that replaces
LabVIEW's shared variables. Converting to ZMQ also allows easy access
using other programming languages, such as Python.

• Predictor returns guesses from 5 different ML algorithms
• (compsci, compsci, compsci, ??, Physics)

Demo - A simplified version using Amazon AWS
and Azure Together

• Create
• An instance of a message Queue

based on AWS SQS
• An dynamoDB table BookTable
• An Azure table called BookTable

• Create 3 services
• Predictor – one parameter (port)
• TableServiceAWS
• TableServiceAzure

• 1st step: create a AWS elastic
container service cluster

Queue

AWS BookTable
Predictor

Azure BookTable

Predictor

Predictor

Predictor

Predictor

Predictor

TS-AWS

TS-Azure

Create a cluster

The microservice containers
• Predictor-new

• A docker container that
• takes one parameter at startup

• The IP port of a service that handles the output
• Runs a loop that pull abstracts from a queue and applies some machine

learning algorithms to classify the abstract
• Sends the result to the output handling service

• TableserviceAzure
• A webservice that waits for a classified document and saves the result in

an Azure table
• TableserviceAWS

• Identical to TableserviceAzure except it has the code to save the result
to the AWS dynamoDB

• Each services is a short python program

Code to create a service

Go to Demo

Microservice Science Applications

• Experiment event stream analysis
• Astronomy, environmental monitors, particle physics,

weather events

• Large scale many-task

computations
• Meta-genomics, protein folding

• Complex workflows
• Experimental quality control with lots of filters and checks

Parting Thoughts

• The cloud data centers are designed to scale
• Traditional HPC MPI programming is now possible, but if you need 10,000

cores a Cray is better.

• The cloud excels at distributed interactive computation
• Spark with Jupyter is a good example

• MapReduce and Graph models are well supported in the cloud
• Microservices provide a means to support very large scale parallelism

in continuously running applications.

Cloud Computing for Science and Engineering
• By Ian Foster and Dennis Gannon
• Published by MIT Press
• Due out in November 2017 (as SC)
• On line at https://www.Cloud4SciEng.org

A new book

https://www.cloud4scieng.org/

Exercises
• If you have Docker installed

• run dbgannon/tutorial
 run -it --rm -p 8888:8888 dbgannon/tutorial

• You should see the spark.ipynb in the notebooks. Fire it up. Make sure it is
running with kernel python 2 and shutdown other big apps. This needs
memory!

• For something different: Signup for https://notebooks.azure.com
• Do the twitter analysis demo

	Cloud Parallelism and Microservices for Science
	The Cloud Data Center Evolution
	Azure and AWS Global Data Center Network
	How to Scale in the Cloud: Models of Parallelism
	Classic HPC
	Map Reduce
	The Hadoop- Yarn ecosystem
	Graph Parallel Computation
	Graph computation example: Spark
	Microservices
	Microservices
	Demo Example
	Example document
	Demo - A simplified version using Amazon AWS and Azure Together
	Create a cluster
	The microservice containers
	Code to create a service
	Go to Demo
	Microservice Science Applications
	Parting Thoughts
	Cloud Computing for Science and Engineering
	Exercises

