Requesting Grid Parameters and Levels with python-awips

The Python AWIPS Data Access Framework can be used to query available grid parameters and levels if given a known Grid name (as of AWIPS 15.1.3 we can not query derived parameters, only parameters which have been directly decoded).

This example requests the U and V wind components for the GFS 40km CONUS and plots the wind speed (total vector) as a gridded contour (color-filled isotachs, essentially):

from awips.dataaccess import DataAccessLayer

# Select grid
DataAccessLayer.changeEDEXHost("edex-cloud.unidata.ucar.edu")
request = DataAccessLayer.newDataRequest()
request.setDatatype("grid")
request.setLocationNames("RAP13")

grid is given as the data type, and RAP13 is given as the grid name. The function getAvailableParameters() returns a list of parameters:

# Print parm list
available_parms = DataAccessLayer.getAvailableParameters(request)
available_parms.sort()
for parm in available_parms:
    print parm

printed as

    AV
    BLI
    CAPE
    CFRZR6hr
    CICEP6hr
    CIn
    CP6hr
    CRAIN6hr
    CSNOW6hr
    GH
    P
    P6hr
    PMSL
    PVV
    PW
    RH
    SLI
    T
    TP6hr
    VSS
    WEASD
    WGH
    uW
    vW

List Available Levels for Parameter

Selecting the u wind component (uW) first and printing the return from getAvailableLevels():

request.setParameters("uW")
available_levels = DataAccessLayer.getAvailableLevels(request)
available_levels.sort()
for level in available_levels:
    print level

prints as

    1000.0MB
    950.0MB
    925.0MB
    900.0MB
    875.0MB
    850.0MB
    825.0MB
    800.0MB
    775.0MB
    725.0MB
    600.0MB
    575.0MB
    0.0_30.0BL
    60.0_90.0BL
    90.0_120.0BL
    0.5PV
    2.0PV
    30.0_60.0BL
    1.0PV
    750.0MB
    120.0_150.0BL
    975.0MB
    700.0MB
    675.0MB
    650.0MB
    625.0MB
    550.0MB
    525.0MB
    500.0MB
    450.0MB
    400.0MB
    300.0MB
    250.0MB
    200.0MB
    150.0MB
    100.0MB
    0.0TROP
    1.5PV
    150.0_180.0BL
    350.0MB
    10.0FHAG
    0.0MAXW

Construct Wind Field from U and V Components

Calling setLevels("10.0FHAG") and selecting the last available time t[-1]:

import numpy
from metpy.units import units
request.setLevels("10.0FHAG")
t = DataAccessLayer.getAvailableTimes(request)
# Select last time for u-wind
response = DataAccessLayer.getGridData(request, [t[-1]])
data_uw = response[-1]
lons,lats = data_uw.getLatLonCoords()

Requesting the grid for v wind componeents (vW):

request.setParameters("vW")
response = DataAccessLayer.getGridData(request, [t[-1]])
data_vw = response[-1]

print 'Time :', t[-1]
print 'Model:', data_vw.getLocationName()
print 'Unit :', data_vw.getUnit()
print 'Parms :', data_uw.getParameter(), data_vw.getParameter()
print data_vw.getRawData().shape

prints as

    Time : 2016-04-20 18:00:00 (240)
    Model: GFS40
    Unit : m*sec^-1
    Parms : vW vW
    (185, 129)
    windArray = [[ 1.47078204  1.69705617  0.69296461 ...,  6.98621511 ...,  0.91923875  1.24450791   1.28693426]]

Calculate absolute wind speed from U and V

The data objects datauw.getRawData() and datavw.getRawData()

spd = numpy.sqrt( data_uw.getRawData()**2 + data_vw.getRawData()**2 )
spd = spd * units.knot
print "windArray =", spd

Plotting a Grid with Basemap

Using matplotlib, numpy, and basemap:

python
%matplotlib inline
import matplotlib.tri as mtri
import matplotlib.pyplot as plt
from matplotlib.transforms import offset_copy
from mpl_toolkits.basemap import Basemap, cm
import numpy as np
from numpy import linspace, transpose
from numpy import meshgrid

plt.figure(figsize=(12, 12), dpi=100)

map = Basemap(projection='cyl',
      resolution = 'c',
      llcrnrlon = lons.min(), llcrnrlat = lats.min(),
      urcrnrlon =lons.max(), urcrnrlat = lats.max()
)
map.drawcoastlines()
map.drawstates()
map.drawcountries()

# 
# We have to reproject our grid, see https://stackoverflow.com/questions/31822553/m
#
x = linspace(0, map.urcrnrx, data_uw.getRawData().shape[1])
y = linspace(0, map.urcrnry, data_uw.getRawData().shape[0])
xx, yy = meshgrid(x, y)
ngrid = len(x)
rlons = np.repeat(np.linspace(np.min(lons), np.max(lons), ngrid),
      ngrid).reshape(ngrid, ngrid)
rlats = np.repeat(np.linspace(np.min(lats), np.max(lats), ngrid),
      ngrid).reshape(ngrid, ngrid).T
tli = mtri.LinearTriInterpolator(mtri.Triangulation(lons.flatten(),
      lats.flatten()), spd.flatten())
rdata = tli(rlons, rlats)
#cs = map.contourf(rlons, rlats, rdata, latlon=True)
cs = map.contourf(rlons, rlats, rdata, latlon=True, vmin=0, vmax=20, cmap='BuPu')

# Add colorbar
cbar = map.colorbar(cs,location='bottom',pad="5%")

cbar.set_label("Wind Speed (Knots)")

# Show plot
plt.show()

png

or use pcolormesh rather than contourf

python
plt.figure(figsize=(12, 12), dpi=100)
map = Basemap(projection='cyl',
      resolution = 'c',
      llcrnrlon = lons.min(), llcrnrlat = lats.min(),
      urcrnrlon =lons.max(), urcrnrlat = lats.max()
)
map.drawcoastlines()
map.drawstates()
map.drawcountries()
cs = map.pcolormesh(rlons, rlats, rdata, latlon=True, vmin=0, vmax=20, cmap='BuPu')

png

Plotting a Grid with Cartopy

python
import os
import matplotlib.pyplot as plt
import numpy as np
import iris
import cartopy.crs as ccrs
from cartopy import config

lon,lat = data.getLatLonCoords()
plt.figure(figsize=(12, 12), dpi=100)
ax = plt.axes(projection=ccrs.PlateCarree())
cs = plt.contourf(rlons, rlats, rdata, 60, transform=ccrs.PlateCarree(), vmin=0, vmax=20, cmap='BuPu')
ax.coastlines()
ax.gridlines()

# add colorbar
cbar = plt.colorbar(orientation='horizontal')
cbar.set_label("Wind Speed (Knots)")
plt.show()

png

Comments:

Post a Comment:
Comments are closed for this entry.
Unidata Developer's Blog
A weblog about software development by Unidata developers*
Unidata Developer's Blog
A weblog about software development by Unidata developers*

Welcome

FAQs

News@Unidata blog

Take a poll!

What if we had an ongoing user poll in here?

Browse By Topic
Browse by Topic
« December 2024
SunMonTueWedThuFriSat
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
    
       
Today